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Particle creation and vacuum polarisation in isotropic 
universe 

A A Grib, S G Mamayev and V M Mostepanenko 
Department of Theoretical Physics, Leningrad Institute of Precise Mechanics and Optics, 
Leningrad, 197101, USSR 

Received 2 March 1979 

Abstract. The particle interpretation of quantised fields in homogeneous isotropic space- 
time is given which is based on the diagonalisation of the Hamiltonian constructed via the 
metrical stress-energy tensor (SET). This interpretation and the regularisation procedure of 
Zeldovich and Starobinsky allows to obtain the total renormalised vacuum expectation 
values of SET which include both vacuum polarisation and non-local terms describing the 
creation of particles. The case of the explicitly soluble cosmological model with initial 
singularity which is asymptotically static in the future is considered. The results of the 
calculation of the total SET in realistic Friedman cosmological models are presented. 

1. Introduction 

Recent developments in astrophysics gave a high priority to the problem of quantum 
effects in gravity. The most important of them is the creation of particles by strong 
gravitational fields near the cosmological singularity or in the process of gravitational 
collapse. This effect is connected with the problem of vacuum polarisation in an 
external gravitational field. 

Particle creation in cosmological models has been under extensive investigation 
during the past decade (see, e.g., Parker 1969, Grib and Mamayev 1969, Zeldovich and 
Starobinsky 1971, Grib et a1 1976, Mamayev er a1 1976a, Frolov et a1 1976, Mamayev 
eta1 1976b, 1977, Chitre and Hartle 1977, Hu and Parker 1978, Audretsch and Schafer 
1978). On the other hand, a number of papers appeared recently (e.g. Dowker and 
Critchley 1976, Davies et al 1977, Bunch and Davies 1977, Bunch 1978a,b, Christen- 
sen 1978, Wald 1978, Davies 1978) where the initially divergent vacuum expectation 
values of the stress-energy tensor (SET) of quantised fields in curved space-times were 
calculated with the help of various regularisation schemes without appealing to any 
particle concept. 

Up to now there has been a troublesome lack of contact between the two above 
mentioned directions. The main reason for it is that in studying particle creation mainly 
nonlocal terms in matrix elements of SET were being computed. In contrast, vacuum 
expectations of SET in the papers mentioned above were calculated either for massless 
fields or in the adiabatic limit, when the particle creation may be ignored. 

Here we shall present a method of calculation of the total vacuum expectations of 
SET in  isotropic space-times which takes into account both local vacuum polarisation 
and nonlocal terms describing the creation of particles. In § 2 the notation is introduced 
and the interpretation of the quantised field in terms of particles based on the 
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diagonalisation of the Hamiltonian is constructed. The regularisation procedure for 
vacuum expectation values of the total SET is given in 0 3. In § 4 an explicitly soluble 
cosmological model with initial singularity which is asymptotically static at future 
infinity is considered. Finally, in 5 4 the results of the calculation of the total SET in 
realistic Friedman cosmological models are presented. 

Units h = c = 1 are used throughout the paper. 

2. Particle interpretation of the quantised field 

We shall consider charged spin-0 and -$ fields in homogeneous isotropic space-times 
with the metric: 

ds2 = a 2 ( q ) [ d q 2 -  yap  dx” dx’] (1) 

where yap is the metric on a 3-space with constant curvature x = +1,0  or -1 (the spin-0 
field is supposed to be conformally coupled to gravitation). 

The field operator may be expanded in creation and annihilation operators 

4 = dcl(J)[4‘-’ (x)a$-’ + 4Y’(x)a$+’] (2) 

where 4 y )  is a complete orthonormal set of solutions of the wave equations, defined as 
having positive (negative) frequency at the moment q = qo (or q + -00).  

The time dependence of 4J(x)  is described by a function gA(q) which obeys an 
oscillatory equation; e.g. in the spin-0 case 

g A  ( 77 + 2( )gA ( 77 = 0, w 2 ( q )  = A + m 2 a 2 ( q )  (3) 

(A is the momentum quantum number). Evidently, the dependence of w 2  in (3) on q 
leads to the frequency mixing, which in quantum theory means the particle creation. In 
non-stationary space-time no invariant concept of positive- and negative-frequency 
modes is available and particle interpretation cannot be constructed without imposing 
some additional principle. 

As such a principle we adopt the requirement that the creation and annihilation 
operators must diagonalise the so called metrical Hamiltonian 

where Ti;’ is the conformal SET operator for the spin-s field, X is a spacelike 
hypersurface and Jkis the conformal Killing vector field (Grib and Mamayev 1969, Grib 
er a1 1976). Hamiltonian (4) is a generator of conformal transformations of the metric 
(1) (Chernikov and Tagirov 1968, Brout er a1 1978). 

For q > qo (4) is a non-diagonal bilinear form in operators a y )  defined in (2). 
Perform a time-dependent Bogoljubov transformation 
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(upper sign corresponds to spin-0, lower sign to spin-3 field). Diagonalisation of (4) is 
achieved if the real bilinear combinations of and PA, 

SA = IPA 1’9 uA - ivA = *2aAPA exp( -2i 1‘ w dq) (6) 

satisfy the following first-order differential equations (Zeldovich and Starobinsky 1971, 
Mamayev et a1 1977) 

70 

with 

(8) 

in spin-0 and -3 cases respectively. Initial conditions for equations (7) are ~ ~ ( 7 7 0 )  = 

w(O)= m 2 a a / w 2 ,  w ( 1 / 2 )  - - m a h / 0 2  

U A  ( 7 0 )  = UA ( V O )  = O. 
The vacuum state at the time 7 is defined by equations 

b$-)(q)lO,) = b;(-)(q) /o , )  = 0.  (9)  

The Heisenberg operators defined as 

dcy’/dq = $ W ( ~ ) C ~ )  +i[H(S), c y ) ] .  (11) 

As is evident from (1 l) ,  there are two sources of time dependence of operators c y ) .  The 
commutator accounts for the usual time evolution of Heisenberg operators, while the 
first term on the right-hand side of equation (1 1) describes the explicit time dependence 
due to the redefinition of the notion of particle for every moment q. 

It is easy to show that the coefficients aA and PA of the transformation ( 5 ) ,  which 
diagonalises the Hamiltonian, are connected with the solutions gA (q) of equation (3) by 
the relations 

where O ( q )  = s o  ~ ( 7 ’ )  dq’. Similar relations hold for the spin-; field. 
Here is a point of contact between the present approach and that used by Zeldovich 

and Starobinsky (1971) and Hu and Parker (1978). In those papers the construction of 
observables was based directly on the decomposition of the solutions of the field 
equations into positive- and negative-frequency parts according to (12) without 
reference to the Hamiltonian diagonalisation. Obviously, the latter gives physical 
foundation for such a decomposition in the isotropic case. 

Using equations (5) and (7) we may calculate expectation values of various physical 
quantities in the initial vacuum IO) = IO,,). In particular, s,, of (6) gives the spectrum of 
quasiparticles defined by operators c y )  : 

*(+) (-) 
SA = ( o l c J  C J  10). 
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3. Regularisation of the stress-energy tensor 

We now procede with computing the expectations of the SET operator in the initial 
vacuum state IO). Straightforward calculation gives (see e.g DeWitt 1975) 

J 

where T$’{ ., . }  is the bilinear form defined by the classical expression for the SET. 
It is well known that (13) diverges even in Minkowsky space-time, where it is made 

finite (actually zero) by normal ordering. In the present case the leading (quartic) 
divergence of (13) may also be eliminated by normal ordering of Tjk in terms of 
time-dependent operators c y ’  ( 7 ) )  (Mamayev er a1 1976a). This normal ordering 
amounts to subtraction of zero-point oscillations of the vacuum IO,,): 

Note that the expectation value (O/N,,(Tjk)lQ) is covariantly conserved since both 
(o/Tjklo) and (O,,/TLklO,,) enjoy this property (modewise). 

After a somewhat lengthy but straightforward calculation the result may be pre- 
sented in the form of integrals over the momentum quantum number A : 

(0/Nq(Tt2)/0)=[(2Y + 1) / r2a2]  I dp‘’)(h)WSA, 
(15) 

{OlN,,(T~~)lO) = [ ( 2 S  4- 1 ) y m m / 3 ~ 2 a 2 ]  (d@,‘”(A)/w)(A2SA - : ~ “ ) U A )  

( f ‘ O ’ =  m2a2,  f “ ’ 2 ’ =  Ama; the off-diagonal components are zero; dp‘”(A) = A’ dA, 
dp““’2’(A) = (A - x/4) dh) .  In the closed model ( x  = +1) one should replace dA -+ CA 
where A runs over 1 , 2 ,  a . . in the spin-0 case and $, 2, . . + in the spin-: case. 

In the spin-0 case one finds from equation (7) s,, -- A -6 ,  U,, - A -4 as A -+ 00, so the 
integrals in (15) converge. In the spin-: case, however, s,, - A  -4, U, ,  - A  -3 and expres- 
sions (15) diverge logarithmically. Moreover, in the general anisotropic case sA - A  -*, 
U,,, c,, - A-’ and (OlN,,(T$’)10) diverge quadratically. Thus an additional regularisation 
is needed. 

As an analysis with the Fock-Schwinger-DeWitt proper-time method shows 
(DeWitt 1975), the divergent part of the effective Lagrangian in the external gravjta- 
tional field is purely local and contains terms, proportional to J-g, J-gR, 
J<(R,kRtk --$R2) and J-gR’. The normal ordering (14) kills the first divergency and 
is equivalent to the renormalisation of the cosmological term. In conformally flat 
space-time and for conformally coupled fields the divergencies of the third and of the 
fourth types in the SET do not arise. Neither is there a G R  term for the conformally 
coupled scalar field, whereas for the spin-: field this term accounts for the above 
mentioned logarithmic divergency in (15), which is proportional to Gjk (Mamayev and 
Mostepanenko 1978a,b). In the general case the divergencies of all the four types are 
present and must be eliminated by means of some regularisation procedure. 

The most suitable one in the case when the mode functions are known is the 
procedure proposed by Zeldovich and Starobinsky (1971). It amounts to substituting in 
(15) the quantities s,, - s2 - s 4 ,  U,, - u2 - u 4  instead of sA, U,, where s,, U,,  are the nonzero 
terms of order o-” in asymptotic expansions of the solutions of equations (7) in inverse 
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Thus, in the x = 0, -1 case, we obtain for the spin-0 field 
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and for the spin-: field 

(similar expressions may easily be obtained for (Tc2))Iep) .  The term xs4/4 is missing in 
(17) since it is of the order of ( m a ) - 2  and no terms including an inverse power of mass 
should be subtracted in a regularisation procedure (DeWitt 1975, Christensen 1978). 

In the closed model (x = +1) the spectrum of A is discrete and additional ‘topologi- 
cal’ terms must be included in (16), (17) (see, e.g., Ford 1976, Mamayev et a1 1976a): 

The terms (18) appear because a discrete sum is subtracted in (14) whereas it should be 
an integral over A since all the divergencies are local. 

As was shown by DeWitt (1975), this procedure (as well as the ‘adiabatic regularis- 
ation’ of Parker and Fulling (1974)) gives the same results as the proper time method. 
Its advantage, however, is that, together with the particle interpretation described 
above, it gives a constructive method for obtaining the total SET including the nonlocal 
terms corresponding to particle creation. 

For homogeneous isotropic space-times one finds 

S’ = & w ( s ) / w ) 2 ,  
3 w ( s )  4 (19) 

1 w(’) d 1 d w”) 1 1 d w(’) s4 =---- - _  -_ +- -- - 

(u2, u4 may be obtained through (7)). 
As stated above, in the spin-0 case, equations (15) give already finite expressions, 

while in the spin-$ case it is sufficient to replace sA and uA by s,, - SZ, uA - u2. However if 
one views the isotropic model as a limiting case of a more general anisotropic one the 
expectation of SET should be computed by means of equations (16) and (17). 

The validity of the regularisation procedure (16), (17) is supported also by the 
following observation. The metric (1) with x = -1 and a ( q ) E e ‘  describes part of the 
flat Minkowsky space enclosed in the future light cone of the origin. Hence it is a 
natural requirement that (OIT,klO)reg in this metric be zero if the vacuum 10) is chosen to 
coincide with the usual Minkowsky space vacuum. The calculation according to (16) 
and (17) shows (Starobinsky 1978) (O/TzklO)reg to be actually zero in this case, although 
the number of quasiparticles is nonzero (see Chitre and Hartle 1977). In fact the 
contribution of quasiparticles to ( Tlk)reg is cancelled by the vacuum polarisation part. 

The contribution of the s4 term in (16) and (17) is independent of the field mass m 
and hence is nonzero in the m + 0 limit. At the same time if m = 0, sA = s~ = 0 and no 
particle creation occurs. Thus the s4 term may be attributed to vacuum polarisation. 
Equations (16)-(18) give for m ” 0 ,  x = 0, +1  

32w w dv  [ w d q  ( w )I 64[w d v (  w )1’*%(y) 
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where ("Hik, ' 3 ' ~ i k  are the covariantly conserved tensors, quadratic in Rik (see, e.g. 
Davies er a1 1977), A. = 1, Bo= -1/6, A l p  = 11/2, B1/2 = -1/2. In the case x = -1 
the third term CJik/240Tza2 withJik = (1 0 iyik), co = -1, c112 = -17/4 must be added 
to (20). This is in agreement with the results of Davies er a1 1977, Davies 1978. SET 
(20) has a nonzero trace (the so called conformal anomaly). Thus we see that in the 
conformally flat metric (1) there is a nonzero vacuum polarisation of massless fields. 
This may be considered as an effect of spontaneously broken conformal symmetry. 

4. An explicitly soluble model 

In this section we shall examine an explicitly soluble case of a model metric with flat 
3-space and the scale factor 

a ( ? )  = a+[ l  -exp(-2yt/a+)] (21) 

or, in terms of the conformal time 7, 

a ( v )  = (a+/2)(tanh 777 + 1). (22) 

Its initial expansion (for t << tt = u + / y )  is similar to that of the Milne universe: 
a ( t )  --2yt, while for t >>'t* it becomes asymptotically static: a ( t ) +  a+. 

For brevity we shall consider here only the spin-0 case. The oscillatory equation (3), 
with initial conditions ensuring the vacuum state at 7 + -CO ( t  = 0), may be solved in 
terms of the hypergeometric function: 

(23) gA(7) = A - ~ "  eiArl(l +e2yq)TF(a,  b ;  c ;  -ezyv) 

with 

a = 7 + (i/2 y)(w+ + A ) ,  b = 7 + (i/2y)(w+ - A ) ,  
2 2 2  

7 =$[I - (1 - (mtt)2)"2], 

From (1 2) we find 

c = 1 + (i/ y )A ,  w + = A 2 + m  a+. 

which allows us to obtain explicit expressions for sA, uA, vA through (24). 
Since as t + CO the expansion eventually ceases, the quasiparticles defined in 5 1 

become real particles; their spectrum is given by n ( A )  = lim,,+m ~ ~ ( 7 )  and may be 
obtained by analytic continuation of F ( a ,  b ;  c ;  -ezy") in the region 7 > 0: 

cosh [ ~ ( w + - h ) / y ] + c o s  [ ~ ( l  -(mt:k)2)1/2] 
2 sinh ( r w + / y )  sinh ( r A / y )  

n ( A )  = 

In the case mt, >> 1 (25) reduces to 

1 + exp[-(.ir/y)(w+ - ma+)]. (26) 
1 

n ( A )  = 
exp(2~A/y)-  1 2 sinh (n-A/y)  

Note that the first term of (26) for A >> ma+ has the form of a black-body radiation 
spectrum with the temperature k T  = y/ (2ra+) .  
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The other limiting case is mt, << 1 (the expansion takes a much shorter time than the 
Compton time m-' ) ;  we have from (25) 

sinh2 [n-(w+ - h)/2y]  
sinh ( i r o + / y )  sinh (.?rA/y)' 

n(A)  = 

For large but finite values of t the analytically continued hypergeometric function in 
(23) may be expanded into power series in exp( -2y~)  and then equations (24) and (6) 
give 

S A ( f )  L- n(h)+[(ma+)4y2/4w6+] exp(-4t/t,) (28) 

where we have omitted oscillatory terms which give neglectable contribution into 
integrals over the whole spectrum. 

Next we shall calculate the stress-tensor of the field for t >> t,. Taking advantage of 
the fact that for the spin-0 field the integrals of s,,, s2 and s4 in (16) converge, we may 
compute them separately. The contribution from s4 coincides with (20); it is exponen- 
tially small for t >> t ,  (as exp(-8t/t,)) and may be neglected. The second term of (28) 
and the term s2 (see (19)) cancel each other. Thus for the energy density E = ( TE)reg we 
have 

m 

E =(l/n-'ua",) jo dh A2w+n(h). 

In a similar way we obtain for the pressure P = -( 7'; )reg the result 

These quantities may be estimated in two cases: t ,  >> m-l and t,<< m-'. For 
t ,  >> m-' using (26) we have 

where l ( z )  is the zeta function. Obviously here we have a nonrelativistic gas of created 
particles (P  << E ) ;  local vacuum polarisation terms have been neglected. 

For mt,<< 1 the quantity n ( h )  is given by (27); integration according to (29), (30) 
yields 

E = y [ l n ( - ) + i ] ,  m4 1 

P=~[I~(----)+$].  m4 1 

16ir irmt, 

16irmt 

In this case the created particles form an ultrarelativistic gas obeying equation of 
state P = 4 3 .  

5. Calculation of SET in the Friedman cosmological models 

Let us now consider a more realistic case of a cosmological model of the Friedman type. 
Since the creation of particles is most intense near the singularity at times t - m-' ,  we 
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may take the expansion law to be 

a (7) = a l v P  = aot4, 0 < q < 1. (31) 

In order to exclude the influence of the period 0 < t < tpi - s (of which we have no 
information) assume that at t < tpi the scale factor a ( 7 )  goes to zero in a sufficiently 
smooth manner. Solving equations (7) and evaluating the integrals in (16 )  for spin-0 
field in the quasi-euclidean or hyperbolic space-time (x = 0, -1) we have: 
for t << m-' 

where F'O) = q2(2q2  - 6 q  + 3 )  and D'", K'O' are 

(33 )  

some other constants depending on q 
~~ 

(see Mamayev et a1 1976a). The expressions for the pressure may be obtained from 
(32 ) ,  (33 )  through the conservation equation C = - 3 u ( ~  + P ) / a .  

The first term in (33) gives the contribution of the created particles while the second 
one corresponds to the vacuum polarisation. 

For a realistic spherical model (x = +1) ma( t )  >> 1 for t > tpr. Therefore the cor- 
responding corrections (18 )  to equations (32 ) ,  (33 )  in this case would be exponentially 
small in the parameter ma. 

For the spin-; case for x = 0 we find (Mamayev and Mostepanenko 1978a,b): 
for t << m-' 

where F('/2) = 1 2q 2 ( 1  l q 2  - 36q + 18)  and D'1/2),  K'1/2' are other constants depending on 
4. 

For the hyperbolic model ( x  = -1) there would be additional terms coming from the 
term x / 4  in the integrals. These corrections are negligibly small for the realistic models 
of the Universe. The same is true for the analogous corrections in the spherical model. 
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